
Our homepage is based on a "basic" layout: take a look at src/templates/
Page/basic.server.tsx . It's a single column layout defined by an <Area>
without any constraints. If a user wants to place many Hero sections on the
page, they can do it. Most websites have a slightly more controlled layout: a
navbar, a title, a footer, optional sidebars, etc. In this section, we'll create a page
layout that suits a typical "About Us" page.

Pages are content nodes, like the heroSection and heroCallToAction nodes
we created previously. Their type is jnt:page , and as for all content, you can
tell Jahia how to render them.

We'll create a single-column layout with a hero section on top. Create a file
named singleColumn.server.tsx in src/templates/Page :

Instead of using jahiaComponent to define a view, we use componentType:
"template" . A template is like a view but for a full-page resource.

Let's break this code down:

The "About Us" Page

Page Templates

import { Area, jahiaComponent } from "@jahia/javascript-modules-library"

import { Layout } from "../Layout.jsx";

jahiaComponent(

{

componentType: "template",

nodeType: "jnt:page",

displayName: "Single column",

name: "singleColumn",

},

({ "jcr:title": title }) => (

<Layout title={title}>

<Area name="header" nodeType="hydrogen:header" />

<main style={{ maxWidth: "40rem", margin: "0 auto" }}>

<Area name="main" />

</main>

</Layout>

),

);

• The Layout component is a simple wrapper that adds <head> and <body>
tags to the page.

• We define two <Area> s: header and main . An area is an entry point for
editors to add content. By default, an area is of node type
jnt:contentList , but since we want to make our header area more

specific, we set nodeType="hydrogen:header" .

We need to define this new header node. We will make it simple to start with,
our header will only contain a hero section.

▸ src/components/Header/definition.cnd

▸ src/components/Header/default.server.tsx

Go ahead and create a new page on your site. Right click the left panel, under
Home, select + New Page and chose the Single column template. Give your
page a title and save it. If you don't see the Single column template, you may
need to restart yarn dev for the new template to be picked up.

You should now see an empty page with two insertion points: one named hero
and the other named main .

Create some content (use Jahia - Basic > Rich Text to write some text) for your
About Us page:

https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/3-the-about-us-page/create-about-page.png
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/3-the-about-us-page/create-about-page.png

Picture by Nasa on Unsplash, text from Wikipedia

Isn't it a bit weird to have CTA buttons on an "About Us" page? Fortunately, Jahia
supports multiple views for the same node type.

In Header/default.server.tsx , replace the current <RenderChild
name="hero" /> with:

This additional property, view , defines the view that should be used when Jahia
renders the heroSection component. We haven't created the small view yet,
if you refresh your page right now you will see an error message instead:

No rendering set for node: herosection
Types: [hydrogen:heroSection]

Start by adding a file named src/components/Hero/Section/types.ts and move
Props to it:

Same Node, Different Views

<RenderChild name="hero" view="small" />

https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/3-the-about-us-page/about-us-big-hero.png
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/3-the-about-us-page/about-us-big-hero.png
https://unsplash.com/photos/photo-of-outer-space-Q1p7bh3SHj8
https://unsplash.com/photos/photo-of-outer-space-Q1p7bh3SHj8
https://en.wikipedia.org/w/index.php?title=Hydrogen&oldid=1279844492
https://en.wikipedia.org/w/index.php?title=Hydrogen&oldid=1279844492

This way, we can import Props in multiple files without duplicating the type
definition. Create a new file named src/components/Hero/Section/
small.server.tsx :

Finally, update src/components/Hero/Section/component.module.css to include
a new class:

You can also update src/components/Hero/Section/default.server.tsx to
include Props instead of defining it again.

import type { JCRNodeWrapper } from "org.jahia.services.content";

/** Properties defined in ./definition.cnd */

export interface Props {

title: string;

subtitle: string;

background: JCRNodeWrapper;

}

import { buildNodeUrl, jahiaComponent } from "@jahia/javascript-modules-library"

import classes from "./component.module.css";

import type { Props } from "./types.js";

jahiaComponent(

{

componentType: "view",

nodeType: "hydrogen:heroSection",

displayName: "Small Hero Section",

name: "small",

},

({ title, subtitle, background }: Props) => (

<header

className={[classes.hero, classes.small].join(" ")}

style={{ backgroundImage: `url(${buildNodeUrl(background)})` }}

>

<h1>{title}</h1>

<p>{subtitle}</p>

</header>

),

);

.small {

min-height: 25vh;

}

The difference between src/components/Hero/Section/small.server.tsx and
src/components/Hero/Section/default.server.tsx is the fact that we declare

the component with name: "small" . This registers a second view named small
for the heroSection node type. When name is not provided, the view is
considered the default one.

After pushing these changes to your Jahia instance, you should see a smaller
hero section on your "About Us" page, without the possibility to add CTA
buttons:

Our page lacks a footer. Let's create a footer component and add it to the
singleColumn template. It'll be a simple component with a copyright notice

and a list of links, but you can make it as complex as you want.

▸ src/components/Footer/definition.cnd

▸ src/components/Footer/default.server.tsx

▸ src/components/Footer/component.module.css

To add this footer to our layout, but make sure it's always the same footer in all
pages, we'll use <AbsoluteArea> instead of <Area> . Update src/templates/
Page/singleColumn.server.tsx :

A Common Footer

https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/3-the-about-us-page/about-us-small-hero.png
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/3-the-about-us-page/about-us-small-hero.png

<AbsoluteArea> is a special area that synchronizes its content across all pages.
It's useful for elements that should be the same everywhere, like a footer or a
navbar. To do so, we have to reference the same node for all pages. To make it
easier, we set the parent to the site node. Make sure to retrieve renderContext
from the second argument of the render function.

Try adding a few links to the footer that should be created at the end of the
singleColumn template. You can also update the copyright notice with your

company name. Once done, you should see a footer at the bottom of your
page:

import { AbsoluteArea, Area, jahiaComponent } from "@jahia/javascript-modules-library"

import { Layout } from "../Layout.jsx";

jahiaComponent(

{

componentType: "template",

nodeType: "jnt:page",

displayName: "Single column",

name: "singleColumn",

},

({ "jcr:title": title }, { renderContext }) => (

<Layout title={title}>

<Area name="header" nodeType="hydrogen:header" />

<main style={{ maxWidth: "40rem", margin: "0 auto" }}>

<Area name="main" />

</main>

<AbsoluteArea name="footer" parent={renderContext.getSite()} nodeType

</Layout>

),

);

https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/3-the-about-us-page/footer.png
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/3-the-about-us-page/footer.png

If you create another page with Single column, you should be able to create a
new Hero section, but the footer will be the same as the one on the "About Us"
page.

Next: Making a Blog

https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/4-making-a-blog
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/4-making-a-blog

