
So far we only considered contributing pages visually, directly in Page Builder.
This is great for individual, unique pages but it's not the best way to manage a
blog. In a blog, you want all your articles to have the same structure and style,
and you want to be able to manage them all in one place.

Let's start by creating a node type called blogPost . We'll keep it concise but
feel free to add more fields if you need them. Create a new file named src/
components/BlogPost/definition.cnd :

You might notice the multiple keyword next to authors: its allows setting a list
of strings instead of a single one. Because it is not marked as mandatory, it may
be undefined: we will treat this case as an empty list. mix:title is a mixin that
adds a jcr:title field to the node type.

Create a types.ts file in the same folder:

Let's also create a simple view to render the blog post as a card:

▸ src/components/BlogPost/default.server.tsx

▸ src/components/BlogPost/component.module.css

Making a Blog

Blog Post Type

[hydrogen:blogPost] > jnt:content, mix:title, jmix:mainResource,

hydrogenmix:component

 - subtitle (string) i18n mandatory

 - authors (string) multiple

 - cover (weakreference, picker[type='image']) mandatory < jmix:image

 - body (string, richtext) i18n mandatory

import type { JCRNodeWrapper } from "org.jahia.services.content";

export type Props = {

"jcr:title": string;

"subtitle": string;

"authors"?: string[];

"cover": JCRNodeWrapper;

"body": string;

};

Instead of creating blog posts directly in Page Builder, we'll store our posts in
Content Folders. This way, we can manage them all in one place and easily list
them.

Create a new folder named blog in the contents folder:

Create a few blog posts in this folder:

Content Folders

Listing Articles

https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/4-making-a-blog/create-content-folder.png
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/4-making-a-blog/create-content-folder.png
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/4-making-a-blog/new-blog-post.png
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/4-making-a-blog/new-blog-post.png

Let's get back to the Pages tab of the sidebar (above Content Folders). Create a
new page named "Blog" with a Single column layout. Create a Hero section on
top of the page to introduce the list of articles.

In the main area, add a new Jahia - Queries > Content items using JCR Query
component. The JCR is the tree-like database where all your content is stored,
pages and content folders alike. We will use a JCR query to list all the blog posts.
In the query field, enter:

JCR-SQL2 is a SQL-like language to query the JCR. This query selects all nodes of
type hydrogen:blogPost that are descendants of the /sites/hydrogen/
contents/blog node. In this query, hydrogen is the site key, you might have set
it to something else when creating your site.

You can set Items to show to a positive number to limit the number of articles
displayed, or -1 to show all of them.

You can also add a rich text above and below the list of articles to introduce and
conclude the blog page, and update the footer to reference your Blog page.
When done, you should have a page that looks like this:

SELECT *

FROM [hydrogen:blogPost] AS post

WHERE ISDESCENDANTNODE(post, '/sites/hydrogen/contents/blog')

https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/4-making-a-blog/jcr-query.png
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/4-making-a-blog/jcr-query.png

Cover image by RetroSupply on Unsplash, article images by Belinda Fewings on
Unsplash and Olga Tutunaru on Unsplash

If you click on a blog post, you'll end up on a 404 error page. We'll take care of
that in the next section. But for now...

Our JCR query is pretty simple: it lists all blog posts. However, our posts are not
ordered and we don't have a way to publish them at a specific date. Let's add a
publicationDate field to our BlogPost type:

It's not marked as mandatory because we can't add a mandatory field to an
existing type, it would be a breaking change. We will consider it a feature: if the
date is not set, the post is a draft.

You also need to update the types.ts file:

Publication Date

 - publicationDate (date)

https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/4-making-a-blog/blog-page.png
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/4-making-a-blog/blog-page.png
https://unsplash.com/photos/vintage-teal-typewriter-beside-book-jLwVAUtLOAQ
https://unsplash.com/photos/vintage-teal-typewriter-beside-book-jLwVAUtLOAQ
https://unsplash.com/photos/3d-painting-of-welcome-6wAGwpsXHE0
https://unsplash.com/photos/3d-painting-of-welcome-6wAGwpsXHE0
https://unsplash.com/photos/3d-painting-of-welcome-6wAGwpsXHE0
https://unsplash.com/photos/3d-painting-of-welcome-6wAGwpsXHE0
https://unsplash.com/photos/white-book-page-on-white-textile-plbb7pkEjkQ
https://unsplash.com/photos/white-book-page-on-white-textile-plbb7pkEjkQ

publicationDate is a string because it's a date in the ISO 8601 format. As the
native Date object does not properly handle time zones, it's easier to handle
dates as strings if your application requires time zone support.

We can also update our JCR query to order the posts by publication date, and
only show published posts:

As you can see, this query looks like a regular SQL query. The DESC keyword
orders the posts by publication date in descending order, so the most recent
posts are displayed first. Don't forget to update your posts with a publication
date!

Finally, it would be nice to display the publication date on the blog post card.
Update the src/components/BlogPost/default.server.tsx file:

import type { JCRNodeWrapper } from "org.jahia.services.content";

export type Props = {

"jcr:title": string;

"subtitle": string;

"authors"?: string[];

"cover": JCRNodeWrapper;

"body": string;

"publicationDate": string;

};

SELECT *

FROM [hydrogen:blogPost] AS post

WHERE ISDESCENDANTNODE(post, '/sites/hydrogen/contents/blog')

AND post.[publicationDate] IS NOT NULL

ORDER BY post.[publicationDate] DESC

// Add `currentResource` to the second argument of the function

<p>

 Written {authors && authors.length > 0 && <>by {authors.join(", ")} </

{publicationDate && (

<>

 on{" "}

{new Date(publicationDate).toLocaleDateString(currentResource.getLocale

dateStyle: "long",

})}

</>

)}

</p>

We used currentResource.getLocale().toString() to get the locale of the
current resource. This is useful when you want to format dates or numbers
according to the current locale. We forward this locale to
Date.toLocaleDateString to format the publication date in a human-readable

way.

There are a lot of things to discover about JCR queries, as it allows you to query,
filter, order and paginate contents in a tree-like structure. You can find more
information in the Jahia documentation.

Next: View Content in Full Page

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toLocaleDateString
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toLocaleDateString
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toLocaleDateString
https://academy.jahia.com/documentation/jahia-cms/jahia-8.2/developer/leveraging-jahia-backend-capabilities/jcrsql2-query-cheat-sheet
https://academy.jahia.com/documentation/jahia-cms/jahia-8.2/developer/leveraging-jahia-backend-capabilities/jcrsql2-query-cheat-sheet
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/5-view-content-in-full-page
https://github.com/Jahia/javascript-modules/blob/0_7_1/docs/1-getting-started/5-view-content-in-full-page

