
1

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 2 / 25

TABLE OF CONTENT

1	 INTRODUCTION ... 3	

2	 CACHE PROCESS IN DIGITAL EXPERIENCE MANAGER ... 5	

2.1	 Rendering scripts execution with legacy implementation ... 5	

2.2	 Rendering scripts execution with new implementation ... 6	

2.3	 Detailed flow of aggregation/Cache ... 7	

3	 WHAT CACHE FRAMEWORK IS DIGITAL EXPERIENCE MANAGER USING? 9	

4	 INVALIDATION OR EXPIRATION? .. 10	

5	 OVERRIDING THE DEFAULT EXPIRATION? .. 11	

6	 AUTOMATIC/MANUAL MANAGEMENT OF DEPENDENCY FOR AN ELEMENT 12	

7	 FRAGMENT KEY GENERATION ... 14	

7.1	 Type of keys .. 14	

7.2	 Cache Key Part Generator ... 14	

7.3	 ACLS in cache keys .. 18	

7.4	 Custom elements in keys .. 19	

7.5	 New implementation specificities .. 20	

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 3 / 25

1 INTRODUCTION
In Jahia Digital Experience Manager, the HTML Cache is implemented with rendering filters

caching each module separately and then aggregating all the modules on rendering time to

deliver the full page to the client.

As an example imagine a "last news module" that display the latest 5 news of a site. The

aggregate on rendering will ask for the module last news for the rendering of each discrete

news, those news will be cached separately and the last news module will only contains its own

html and references to the displayed news. When subsequent rendering is asked the last news

modules search for the expected news in the cache. If they are found it aggregates the content

in the output, otherwise it asks for rendering only the missing part. This means that your news

can be cached for hours but your last news request be cache for only 5- 10mn (depending on

the frequency of updates on your site (no cache is never a good idea)), older new will be

delivered from the cache and only the new one will fully rendered by the engine.

Jahia Digital Experience Manager 7.2 provides a new implementation for the aggregation and

cache mechanism, based on two filters (AggregateFilter and CacheFilter) and uses a new

aggregation flow.

Why a new implementation for Digital Experience Manager 7.2 ? Because the legacy

implementation has one defect which is that a parent fragment is put in cache only when the sub

fragments are rendered, and cached.

This simple sentence resume by itself why it was necessary to change this.

As an example, imagine a user (user 1) is requesting a page of the site, this page is using a

template named “2 columns”. 2 seconds after another user (user 2) is requesting another page of

the site, this page is using the same template (“2 columns”). For some reason the page requested

by user 1 is taking 2min to be displayed, because this page contains somewhere one fragment

doing an external call to an external API and there is some connection issue.

The effect of this is that user 2 is blocked during 2 min, because user 1 is generating the

template fragment. and the template fragment will be put in cache only when all the sub

fragments of the page are rendered and cached.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 4 / 25

You can imagine worst scenarios with a lot of users.

With the new implementation, this can’t happen anymore because now a parent fragment is put

in cache directly, then the sub fragments are rendered and cached.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 5 / 25

2 CACHE PROCESS IN DIGITAL EXPERIENCE
MANAGER

Figure	1	Example	of	page	structure	

2.1 RENDERING SCRIPTS EXECUTION WITH LEGACY
IMPLEMENTATION

The legacy cache implementation rendered all the fragments of the page before aggregating

them and storing them in the cache. This implementation is great because the fragment

aggregation was done at the end of the rendering pipeline, thus allowing to have a single page

context for the whole process. It made things easier to save parameters in the page context and

access them in other execution scripts.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 6 / 25

The downside of this method is that while the entire page is rendered, no fragment gets stored

in the cache. It is not a problem for a single user on the platform, but can become an issue when

concurrent users access shared resources on the site. (In the above example, page templates and

navigation menus are shared resources).

This strategy is not ideal from a performance standpoint. It was decided to move away from it

and allow a new implementation in DX 7.2.

2.2 RENDERING SCRIPTS EXECUTION WITH NEW
IMPLEMENTATION

Instead of caching and aggregating fragment at the end of the rendering pipeline, each fragment

is now cached and aggregated right after it is generated. It is then made available for all requests

right away.

Now, since the aggregation is done after each fragment generation, variables cannot be passed

implicitly between views anymore. (Fragments aren’t aggregated on the fly anymore, but

extracted from the cache as they are needed, thus losing variables passed implicitly)

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 7 / 25

2.3 DETAILED FLOW OF AGGREGATION/CACHE

Figure	2	Example	of	page	structure	

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 8 / 25

Figure	3	Legacy	implementation	flow	(using	one	render	filter)	

Figure	4	New	implementation	flow	(using	two	render	filter)	

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 9 / 25

3 WHAT CACHE FRAMEWORK IS DIGITAL
EXPERIENCE MANAGER USING?

We are using EHCache in its version 2.8.1.

You can configure it in the file WEB-INF/classes/ehcache-jahia.xml or

WEB-INF/classes/ehcache-jahia_cluster.xml.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 10 / 25

4 INVALIDATION OR EXPIRATION?
Digital Experience Manager is using both modes for its caches, by default a fragment will have

its expiration set to 4 hours.

If during this time the element is updated or deleted or child node is added/removed the

element will be invalidated from the cache on the fly.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 11 / 25

5 OVERRIDING THE DEFAULT EXPIRATION?
You can override the default expiration in two ways.

The easiest and more end-user friendly method, is to allow the users to specify the expiration

time directly from the end user interface.

User need specific permissions to access to this parameter.

To enable manual setup of expiration delay in the engines, you must apply the mixin type

jmix:cache to the targeted object definition.

[jnt:lastNews] > jnt:content, jmix:list, mix:title, jmix:queryContent, jmix:cache
 - maxNews (long) = 10 indexed=no
 - filter (reference, category[autoSelectParent=false])

You can also have a hardcoded expiration on a per template basis in a template properties file.

Example you can create the jnt_banner/html/banner.properties file in default module to make

banner cached only 30s.

#Make banner non cacheable
cache.expiration = 30

Expiration delays are expressed in seconds.

Note that if you have an alternative view on your content, you can specify a properties file for

this view that will override the default ones if present.

For instance, the jnt_user/html/user.welcome.properties file in default module overrides the

cache for the "welcome" view of the user module.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 12 / 25

6 AUTOMATIC/MANUAL MANAGEMENT OF
DEPENDENCY FOR AN ELEMENT

Dependencies of an html element define for which nodes updates this element should be

flushed. The system tries to handle most of the dependencies by itself. Automatically the system

detects implicit dependencies like parent/childs.

If an existing child is updated, only his html fragment will be flushed from the cache. If we create

or delete a new child, the system will also flush the parent html fragment. So the system handles

automatically all standard parent/child relations.

Now if you have some bound components in your page, the system handles it automatically by

making those elements dependent of the bound component for the key computing.

The system will also parse your html to find all the links you have in your module html to other

nodes (useful for rich text where your editors will have entered links to pages or contents you

couldn't know in advance) and define the corresponding dependencies.

This parsing is executed by the CacheUrlDependenciesParserFilter.

So if in your templates you have defined a template for a news object that add a rateable

module bound to this news, then the cache will reflect that by caching the rendering of you

rateable module per main resource and adding a dependency to the news.

This way we avoid to display the same rateable module for all news, but we have one per news.

You can have some of those dependencies set using the template properties file.

You can also define directly in your script file (jsps, etc.) the dependencies you want to add to

your fragment. As an example, we can look at the comments component that you can bind to

any object in Digital Experience Manager. This comments components works in two parts.

First part is the display of the form to add a comment, second part is the display of the

comments list. This form on first submission will create a subfolder under the main resource

called comments.

So, on the creation of the first comment the display list will be correctly flushed as the system as

automatically created a dependency between the fragment and the main resource.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 13 / 25

By adding a child under the main resource (comments node) we will flush all html fragments

having a dependency to the main resource.

But for subsequent submission of new comments, we do not update anymore the main resource

but only the subnode comments, so in our script we have to tell the system to flush this html

fragment when the main resource subnode comments is updated.

<jcr:node var="comments" path="${boundComponent.path}/comments"/>
<c:if test="${not empty comments}">
 <template:addCacheDependency node="${comments}"/>
 <template:module node="${comments}" />
</c:if>

Here what you have to keep in mind is that if your script loads another node than the current

node or the bound one then you will have to add a dependency manually.

You can also define dependencies based on some regular expression, this is really useful for html

fragment that are using search queries to display content. As a rule, if you are using a query and

that query have a constraint on descendant nodes or children node then you should have a

regexp dependency on that path

Here an example from the blogs application.

<query:definition var="result"
 statement="select * from [jnt:blogPost] as blogPost where

isdescendantnode(blogPost, ['${renderContext.mainResource.node.path}']) order by
blogPost.[jcr:lastModified] desc" limit="20"/>

<template:addCacheDependency
flushOnPathMatchingRegexp="\\\\Q${renderContext.mainResource.node.path}\\\\E/.*/c
omments/.*"/>

This fragment will be flushed for any change on any nodes down to two sub level of the main

resource.

The \\\\Q and \\\\E are here to define an escape sequence so that whatever the path value it

will be interpreted literally (This should be put in all your regexp encapsulating an unknown

path).

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 14 / 25

7 FRAGMENT KEY GENERATION
Originally called cache keys, they are more fragment keys now. Because they are used by the

Aggregate filter to identify fragments.

7.1 TYPE OF KEYS
• Fragment key: This is the identity of the fragment without the context.

• Fragment final key: The complete identity of a fragment, the final key is the result of

(Fragment key + the current context of rendering). For example the same fragment key

can result in multiple different final keys depending on the context of the render request.

(users logged or not, parameters, etc.)

7.2 CACHE KEY PART GENERATOR
These classes are used to add new entries to fragment keys, and fragment final keys. In order to

do that you can implement CacheKeyPartGenerator.

It contains two methods:

• getValue(): used to generate the key only when the parent fragment is not in cache.

Parent fragment html contains the sub fragment key, we will try to find the fragment

using this key before calling the getValue() to rebuild it.

To summarize:

• build the fragment key

• only when parent fragment is not in cache

• support heavy operations like reading nodes from JCR

• replacePlaceHolders(): used to build the final key. When the fragment key is retrieved

from parent fragment or have already been constructed. This method is called just after

to identify the fragment based on the current context of execution.

This method is used to replace the previous value in the key, by something that could potentially

differentiate the fragment based on the context, even if the initial fragment key is the same.

To summarize:

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 15 / 25

• Build the fragment final key

• Always called in all the case

• Do not support heavy operations, avoid JCR read here.

Example of best practice for CacheKeyPartGenerator implementation:

public class ContextCacheKeyPartGenerator implements CacheKeyPartGenerator {
 @Override
 public String getKey() {
 return "context";
 }

 @Override
 public String getValue(Resource resource, RenderContext renderContext,
Properties properties) {
 // read the node to detect if the resource need to be contextual
 // will be call only one time
 if (resource.getNode().isNodeType("jnt:contextualizedNode")) {
 return "contextual";
 }
 return "notContextual";
 }

 @Override
 public String replacePlaceholders(RenderContext renderContext, String keyPart)
{
 // apply the contextual changes in the final key to differentiate the
fragments
 if("contextual".equals(keyPart)) {
 return renderContext.isLoggedIn() ? "logged" : "notLogged";
 }
 return keyPart;
 }
}

In the previous example the node of type "jnt:contextualizedNode" will have 2 possible different

final key depending on the context (user logged or not)

So the best practice for the CacheKeyPartGenerator implementation is:

• avoid JCR read in replacePlaceHolders (because call every time)

• use this two methods to decouple the logic of your cache key part generators (what is

contextual ? what is not contextual ? do you need to read nodes ?)

Example of implementations:

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 16 / 25

The core defines different key parts like "workspace", "language", "node path", "template",

"templateType", "acls", "queryString", which are usually enough to create a unique key for each

fragment. The default generators are defined in the file applicationcontext-cache.xml.

<bean id="cacheKeyGenerator"
class="org.jahia.services.render.filter.cache.DefaultCacheKeyGenerator">

 <property name="partGenerators">
 <list>
 <bean

class="org.jahia.services.render.filter.cache.LanguageCacheKeyPartGenerator"/>
 <bean

class="org.jahia.services.render.filter.cache.PathCacheKeyPartGenerator"/>
 <bean

class="org.jahia.services.render.filter.cache.TemplateCacheKeyPartGenerator"/>
 <bean

class="org.jahia.services.render.filter.cache.TemplateTypeCacheKeyPartGenerator"/
>

 <ref
bean="${org.jahia.aclCacheKeyPartGenerator.implementation:aclCacheKeyPartGenerato
r}"/>

 <bean
class="org.jahia.services.render.filter.cache.ContextCacheKeyPartGenerator"/>

 <bean
class="org.jahia.services.render.filter.cache.WrappedCacheKeyPartGenerator"/>

 <bean
class="org.jahia.services.render.filter.cache.CustomCacheKeyPartGenerator"/>

 <bean
class="org.jahia.services.render.filter.cache.QueryStringCacheKeyPartGenerator"/>

 <bean
class="org.jahia.services.render.filter.cache.TemplateNodesCacheKeyPartGenerator"
/>

 <bean
class="org.jahia.services.render.filter.cache.ResourceIDCacheKeyPartGenerator"/>

 <bean
class="org.jahia.services.render.filter.cache.InAreaCacheKeyPartGenerator"/>

 <bean
class="org.jahia.services.render.filter.cache.SiteCacheKeyPartGenerator"/>

 <bean
class="org.jahia.services.render.filter.cache.ModuleParamsCacheKeyPartGenerator"/
>

 <bean
class="org.jahia.services.render.filter.cache.AjaxCacheKeyPartGenerator"/>

 <ref bean="areaResourceCacheKeyPartGenerator"/>
 </list>
 </property>
</bean>

However, if you need to customize the key by adding specific values, a spring bean

implementing CacheKeyPartGenerator can be added to any module, and will impact all keys

generated for the cache.

Each key that is generated looks like that:

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 17 / 25

en@@/sites/ACMESPACE/contents/projects-news/news_36-

1@@medium@@html@@privileged%2Csiteadministrator:%2Fsites%2FACMESPACE|@@module@@f

alse@@@@{}@@@@998a823d-f275-4a10- aef4-0ae9d1ea5677@@@@ACMESPACE:null@@{}@@

Each parameter of the key is separated by @@ so be sure to avoid this symbols inside your

values, empty part is possible.

Keys are generated during the prepare and execute phase of the AggregateFilter and should

give the same result on each call, otherwise DXM will log a warning like Key generation does not

give the same result after execution… with the involved keys. This issue can lead to an overhead

in cache generation as fragments might not be found in the cache.

Here is an example of a very simple part, the LanguageCacheKeyPartGenerator:

public class LanguageCacheKeyPartGenerator implements CacheKeyPartGenerator {
 @Override
 public String getKey() {
 return "language";
 }

 @Override
 public String getValue(Resource resource, RenderContext renderContext, Properties

properties) {
 return resource.getLocale().toString();
 }

 @Override
 public String replacePlaceholders(RenderContext renderContext, String keyPart) {
 return keyPart;
 }
}

As you can see this one returns the locale of the current resource as a String when the key is

generated. And the “replacePlaceHolders” is just returning the same value, because there is

nothing else to do. We could use the replacePlaceHolders() to resolve the language, but we

prefer to use the getValue() here because the language is the only information to resolved and

mainly because if a parent resource is in language “EN” the child resource will also be in “EN”.

The “replacePlaceHolders” is called in all the case, so here we use the “getValue” because this

one is only called when the key is built for the given resource, this way we reduce the code

executed when fragments are in cache.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 18 / 25

Another example is the path part of the key that can take into account the main resource

requested by the user:

public class PathCacheKeyPartGenerator implements CacheKeyPartGenerator {
 public static final String MAIN_RESOURCE_KEY = "_mr_";

 @Override
 public String getKey() {
 return "path";
 }

 @Override
 public String getValue(Resource resource, RenderContext renderContext, Properties

properties) {
 StringBuilder s = new StringBuilder(resource.getNode().getPath());
 if ("true".equals(properties.getProperty("cache.mainResource"))) {
 s.append(MAIN_RESOURCE_KEY);
 }
 return s.toString();
 }

 public String getPath(String key) {
 return StringUtils.replace(key, MAIN_RESOURCE_KEY, "");
 }

 @Override
 public String replacePlaceholders(RenderContext renderContext, String keyPart) {
 return StringUtils.replace(keyPart, MAIN_RESOURCE_KEY,
 renderContext.getMainResource().getNode().getCanonicalPath() +

renderContext.getMainResource().getResolvedTemplate());
 }
}

In this one, we use the token “_mr_” returned by the getValue() and replaced by the

replacePlaceHolders(). A same node can be displayed in different context, with different main

resource, that’s why this operation is done in the replacePlaceHolders(). We also read the

properties in the getValue() to know if the current fragment have the properties

cache.mainresource.

7.3 ACLS IN CACHE KEYS
Upon a request if content is not cached we search for all the ACLs that can apply for the user

directly. Then we look up all the ACLs of the groups in its membership list. We use all this to

build a map of ACLs per path as ACLs are applied for a path.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 19 / 25

Groups and Users ACLs are stored in local cache that are flushed when an ACL is updated on the

platform.

Improvement on new implementation:

• ACL in the keys were taking too much space, ending with very big keys. This have

been fixed in 7.2

• New global optimization configs for ACLs key part are available:

o org.jahia.aclCacheKeyPartGenerator.usePerUser : replace the ACLs in the

fragment key by the user key of the current user, very fast to execute, but memory

consuming, because a lot of cache entries will be created depending on the

number of users on the platform. Default value: FALSE

o org.jahia.aclCacheKeyPartGenerator.useGroupsSignature : best optimization,

activated by default since 7.2. Internally cache all the principals users/groups that

have ACLs, and append them to the key if it’s needed. Faster than 7.1

implementation and fragment keys shortened. Default value: TRUE

• View properties:

o cache.perUser: same effect as org.jahia.aclCacheKeyPartGenerator.usePerUser

but only for the current fragment.

o cache.useGroupSignature: same effect as

org.jahia.aclCacheKeyPartGenerator.useGroupsSignature but only for the current

fragment.

7.4 CUSTOM ELEMENTS IN KEYS
The custom cache key part allows you putting some elements in the request in an attribute

named module.cache.additional.key. This element has to be present in the request in the

prepare phase of the AggregateFilter so it means it has to be set before (higher priority filter,

like the ChannelFilter for example, which is using that mechanism to switch cache between

different channels). The value of the custom parts are returned as is in the replacePlaceholders

phase.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 20 / 25

7.5 NEW IMPLEMENTATION SPECIFICITIES

7.5.1 Flow specificities:
In the new implementation, rendering scripts (JSPs and other scripts) are executed

independently and not on a single page context anymore. This optimization is part of the new

DXM 7.2 cache strategy as it allows to decouple the execution of each single fragment on a

page, hence avoiding to lock a whole tree of fragments that could be used by concurrent HTTP

requests (e.g other users on the platform).

7.5.2 Variables passed implicitly
Variables passed implicitly between view when using <template:module> tags aren’t considered

best practices and DXM provides alternative solutions. This pattern has a chance to do not work

like it used to when using legacy aggregate/cache implementation.

Code that might play poorly with the new implementation was already generating some issues

before the HTML cache optimization. It won’t work at all now.

Default view:

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 21 / 25

<template:module node="${currentNode}" view="detailView"/>
<%
 // This is a simplified version of what actually happens in real life, but think

of variables
 // initialized in Render Filters for instance.
 // Note that this kind of code actually generated issues before DX 7.2, but it

will work even less
 // now each fragment generation is decoupled
 request.getSession().setAttribute("myVar", request.getAttribute("myVar"));
%>
myVar : ${myVar}

Detail view (detailView):

 <%
 // This is a simplified version of what actually happens in real life, but think

of variables
 // initialized in Render Filters for instance.
 // Note that this kind of code actually generated issues before DX 7.2, but it

will work even less
 // now each fragment generation is decoupled
 request.setAttribute("myVar", "Value of myVar");
%>

That code won’t work because template:module isn’t generating the fragment on the fly, but will

rather generate a placeholder to be replaced with the actual HTML fragment later. The whole

default view will now be executed before the detailView is called.

If for some reason, you need to make the previous case work with the new implementation, it’s

still possible to disable the aggregation. Multiple ways are available to achieve that:

• In a Render Filter, set the AggregateFilter.SKIP_AGGREGATION request attribute to true

• In the properties file associated to a view, define skip.aggregation=true

• In a view, set the skipAggregation attribute to template:module to true

By doing that, template:module will generate the fragment on the fly and will return once the

detailView is executed. keep in mind that doing this will merge both fragment in the cache entry

(instead to have two cache entries, there will be only one containing both fragment already

aggregated)

Or you can use the Interface RenderContextTuner.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 22 / 25

7.5.3 RenderContextTuner
It’s a new interface related to the new implementation, it allows serializing data into the

fragment key to be able to restore it if this fragment needs to generate and the parent is in

cache.

Scenario example:

• Parent fragment A is in cache

• Sub fragment B have been flushed

• When the page is requested by a visitor, the fragment A is served by the cache, but

fragment B has to be generated. But there is an issue with this, fragment A was setting

request attribute in the request for fragment B.

To be able to handle such case, a Cache key part generator can implement the interface

RenderContextTuner. And here is how the previous scenario will be handled:

@Override
public Object prepareContextForContentGeneration(String value, Resource resource,

RenderContext renderContext) {
 if (fragmentA) {
 // set the request attribute for the next render chain
 renderContext.getRequest().setAttribute(requestAttrFragmentB,

deserialize(value));
 return value;
 }
 return null;
}

@Override
public void restoreContextAfterContentGeneration(String value, Resource resource,

RenderContext renderContext, Object original) {
 if (fragmentA && original != null) {
 renderContext.getRequest().removeAttribute(requestAttrFragmentB);
 }
}

The above two methods are provided by the RenderContextTuner interface. the method

“prepareContextForContentGeneration” is called before the render chain starts to generate

fragment B, so the data is put in request and will be used by Fragment B JSP. The method

“restoreContextAfterContentGeneration” is called just after the render chain finished to render

fragment B, this way we can clean the request.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 23 / 25

So, using RenderContextTuner, it’s now possible to store data in the fragment key, and reinject

this data to be able to render fragments correctly, when data need to transit between different

level of fragments, this is considered as the best practice now.

The core is providing some usage of the RenderContextTuner, example of the

AreaResourceCacheKeyPartGenerator:

@Override
public Object prepareContextForContentGeneration(String value, Resource resource,

RenderContext renderContext) {
 if (!isDisabled() && StringUtils.isNotEmpty(value)) {
 // set the request attribute for the next render chain
 renderContext.getRequest().setAttribute(SAVED_AREA_PATH, value);
 return value;
 }
 return null;
}

@Override
public void restoreContextAfterContentGeneration(String value, Resource resource,

RenderContext renderContext, Object original) {
 if (!isDisabled() && original != null) {
 renderContext.getRequest().removeAttribute(SAVED_AREA_PATH);
 }
}

This key part generator oversees storing the area path if the fragment is under an area, this is

mainly used by content list that need to get the properties of the area. The content list is under

the area, if the area is in cache but the content list not, the area data will be lost.

That’s why the area path is serialized into the fragment key, this way we can re inject it before

generating content list fragment and clean the injected data after.

7.5.4 JCR Node read before Cache Filter
The new implementation has been designed to use the render chain capabilities. Now Render

filters that have priorities inferior to the Cache filter are executed even if the fragment is in

cache. This is a big difference compared to the previous implementation.

Due to the HTML cache refactoring, some changes were made to the Render Filters with a

priority lower than 16.

• Legacy implementation, filters with a priority lower than 16 that apply to a view (that

does not belong to the main resource) which is cached are not executed.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 24 / 25

• New implementation, filters with a priority lower than 16 that apply to a view which is

cached are executed each time.

Custom Render Filters with a priority lower than 16 need to be analyzed since chances are they

will get executed much more often than before.

It is not considered as a good practice to do backend calls during a render chain execution

before the HTML CacheFilter is called. To discourage developers from doing so, a WARN

message has been introduced in the logs when JCR read operations are performed in a Render

Filter with a priority lower than 16.

Since Render Filters with a priority lower than 16 are now called each time a fragment is

displayed, read operations in such case will become costlier. Developers are encouraged to

move the JCR Read and Write operations to Filters executed after the caching takes place.

7.5.5 Render filters priorities:
The priority of Render Filters is now a Long variable, instead of an Integer. This allows to be

more accurate in render filter placement.

Instead of a monolithic AggregateCacheFilter , two new filters have been created:

AggregateFilter and CacheFilter. A new filter was also created to measure the rendering time of

each individual fragment. For legacy purposes, AggregateCacheFilter still exists and can be

activated instead of the new implementation.

16.0 AggregateFilter New implementation: Aggregate filter, aggregates contents by

resolving sub fragments

16.0 AggregateCacheFilter Legacy implementation

16.1 MetricsLoggingFilter Calls the logging service to log the display of a resource. Also

initializes profiling information. Disabled by default in 7.2.

CACHES
DIGITAL EXPERIENCE MANAGER 7.2

© 2002 – 2017 Jahia Solutions Group SA Page 25 / 25

16.5 CacheFilter New implementation: Cache filter, provides the html result

(either from the cache or by generating it) of the fragment and

caches it if necessary

16.8 NodeAttributesFilter NodeAttributesFilter Sets request parameters related to

the JCR node; separated from the BaseAttributesFilter to avoid

reading the node from JCR before the cache filter

