
1

BUCKET INPUT DIRECTIVE

FORM FACTORY V2

BUCKET INPUT DIRECTIVE
FORM FACTORY V2

© 2002 – 2016 Jahia Solutions Group SA Page 2 / 3

The following document will explain the usage of the input bucket directive.

Input bucket directive attributes:

• bucketMode - (=)
o boolean, Inputs can only be selected once

• multiStepMode - (=)
o boolean, Inputs grouped by step number

• displayTitle - (=)
o boolean, Whether to display the input directives default

title. Can be overridden by setting the following resource bundle key:
angular.ffInputBucketDirective.label.selectInput

• setDefault - (=)
o boolean, If true, the first available input will be selected if no previous value was

selected.
• fieldName - (=)

o string, represents the previously selected input field
name. Also used to initialize selectedInput.

• emitOnChange - (@?)
o string, The name of a function that should be emitted

once an input has been selected. Will contain the selectedInput as the 2nd
parameter

• broadcast - (&?)
o A function that will be called once an input has been selected.

When the provided function is called you can, for example perform a broadcast to
alert any listeners about the change.

• availableInputs - (=)
o array, A prepared array containing objects that describe the represented inputs.

Required properties are:
§ label - The label identifying the input, that is display to the user.
§ fieldName - The input name.
§ index - Index of the input object in the availableInputs array. Used to track

the selected inputs.
§ stepIndex - Used to sort inputs when using multiStepMode.
§ stepName - Used as the group name when grouping inputs.

Example of initializing the input bucket directive’s availableInputs property:

scope.availableInputs = [];
_.each(scope.form.steps, function(step, sIndex) {
 _.each(step.inputs, function(input) {
 scope.availableInputs.push({
 fieldName: input.name,
 label: input.label,
 stepName: step.label,
 stepIndex: sIndex
 });
 scope.availableInputs[scope.availableInputs.length-1].index = scope.availableInputs.length-1;

BUCKET INPUT DIRECTIVE
FORM FACTORY V2

© 2002 – 2016 Jahia Solutions Group SA Page 3 / 3

 });
});
scope.selectedInput = scope.availableInputs[0];

In the above example, we would be preparing the availableInputs to be used in a
multiStepMode, as we are supplying the stepName and stepIndex.

In the template we would call the directive but supplying it with the correct attributes as follows:

<ff-input-bucket display-title="true"
 field-name="selectedInput.fieldName"
 bucket-mode="false"
 multi-step-mode="true"
 emit-on-change="notifyInputSelected"
 available-inputs="availableInputs">
</ff-input-bucket>

By doing so, we specify to the directive that it will not function as a bucket, It will display the
inputs grouped by their corresponding step. Upon input selection the input bucket directive will
emit a call corresponding to notifyInputSelected. In the directive that uses the input bucket
directive we can then listen for call that was emitted:

//Emitted from Input bucket, the function will contain
//the selectedInput as the 2nd parameter.
scope.$on('notifyInputSelected', function(event, selectedInput) {
 //Do something here
});

When an input is selected, it is attached to the current scope as selectedInput, that will contain
the object that is selected from the availableInputs array. As mentioned in the comments of the
above code snippet, the selectedInput is also available as the 2nd parameter of the emitted
function.

This is a simple scenario to showcase the usage of the input bucket directive. More complex
scenarios can be achieved by using the input bucket directive in bucket mode.

