
Automate your Jahia deployments
with Docker & our provisioning API

Serge Huber, Jahia CTO
shuber@jahia.com

What is Docker ?
● An Open-Source containerization

platform

● It packages an application and all its
runtime dependencies into a
standardized container format.

● As opposed to Virtual Machines, Docker
containers do not emulate the underlying
hardware, providing greater performance
and portability.

● Docker images can be executed on Linux
servers using the Docker engine, Cloud
services such as Amazon ECS,
Orchestration systems such as
Kubernetes, and more…

Why Docker with Jahia ?

● Useful for development, testing and pre-production

● Easily launch different versions of Jahia

● Simplifies packaging & evaluation of Jahia

● Simplifies upgrade management

● Using Docker Compose you can setup full stacks including

database, ElasticSearch, etc…

Jahia Docker
Images

Overview

Modern docker images are available starting with Jahia 8.0.3.0

Jahia Docker images:

● are built directly from the codebase

● support all of Jahia features

● follow best practices for Docker containers

● simplify migrations (does not require fix appliers)

Jahia Docker Images

Two docker Images

jahia/jahia-ee

● Available at: https://hub.docker.com/r/jahia/jahia-ee/tags

● Production Enterprise image

● Supports “all” Jahia features (incl. all databases)

● Uses release tags (8.1.1.0, ...) & aliases (8, 8.1, 8.1.1, …)

jahia/jahia-discovery

● Available at: https://hub.docker.com/r/jahia/jahia-discovery/tags

● Discovery image

● Pre-installed with Digitall sample site and Derby database

● Uses release tags (8.1.1.0, ...) & aliases (8, 8.1, 8.1.1, …)

Jahia Docker Images

https://hub.docker.com/r/jahia/jahia-ee/tags
https://hub.docker.com/r/jahia/jahia-discovery/tags

Start Jahia with Docker
Jahia Docker Images

Get Started

● This is all needed to get started with Jahia on Docker
● It automatically starts Jahia with Derby and a 30 days discovery license

Progressively build your environment

● Connect Jahia to a database
● Provide a license
● Add environment variables
● Start a provisioning script
● And more…

docker run -p 8080:8080 jahia/jahia-ee:8.1.1.2

docker run -p 8080:8080 \

 -e DB_VENDOR="mariadb" -e DB_HOST="mariadb" \

 -e DB_NAME="jahia" -e DB_USER="jahia" -e DB_PASS="fakepassword" \

 -e JPDA=true \

 -e OPERATING_MODE=development \

 -e JAHIA_PROPERTIES="prop1=xx,prop2=yy" \

 jahia/jahia-ee:8.0.3.0

Container runtimes
There are multiple ways to start a Docker container:

● Using the Docker Engine with the Docker CLI (docker run …)

● Using the Docker Engine with Docker compose

● Using Kubernetes with containerd

● Using cloud native container services such as AWS ECS

● and more…

The Docker Engine is the most common container engine (especially useful for local

execution), but other engine do exist
see: https://kubernetes.io/docs/setup/production-environment/container-runtimes/

“docker run” is used primarily for development, other container services (such as

Kubernetes) are used for production applications.

Jahia Docker Images

https://kubernetes.io/docs/setup/production-environment/container-runtimes/

Deploying modules to Jahia
Docker containers

1. Using the Jahia Maven plugin
mvn jahia:deploy -Djahia.deploy.targetContainerName=DOCKER_CONTAINER_ID

(Note: requires Jahia Maven Plugin version >= 5.13)

mvn org.jahia.server:jahia-maven-plugin:5.13:deploy

-Djahia.deploy.targetContainerName=DOCKER_CONTAINER_ID

2. Using the Provisioning API (later in this presentation)

● Using the module UI
○ Upload the JAR through the

administration UI

Debugging Jahia Docker
containers

Environment variable : JPDA=true

Startup commands:
docker run -e JPDA=true -p 8080:8080 -p 8000:8000 jahia/jahia-ee:latest

Note: the port 8000 has to be exposed to be able to connect the Debugger

Connect an IDE to debug using a remote JVM connection to localhost:8000

Create your own image ?
● Chaining images is part or Docker core principles

○ Using Docker “FROM” statement

○ For example:
■ jahia/jahia-ee is built “from” tomcat

■ jahia/jahia-discovery is built “from” jahia-ee

● Creating your own image using jahia/jahia-ee is supported option:
○ To package additional dependencies

○ To add additional logic specific to your environment

○ To modify the setup of the source image

● Support
○ jahia-ee is the only docker image fully supported. Custom images will be supported to the

extent that the issue is reproducible on the jahia-ee images.

Jahia Docker Images

More on
https://academy.jahia.com/documentation/system-administrator/dev-ops/docker/building-or-extending-jahia-images

https://academy.jahia.com/documentation/system-administrator/dev-ops/docker/building-or-extending-jahia-images

Upgrading using Docker

● Software upgrade is performed by updating the image associated with a container

● A three steps process
○ Stop the Jahia container(s)
○ Start a new Jahia container in version n+1 that points to the same volume and database
○ If running a cluster, once the first container has finished starting, all other containers can be

started

Jahia Docker Images

More on
https://academy.jahia.com/documentation/system-administrator/dev-ops/docker/migrations-with-docker-images

docker run [docker options here] --name jahia8 -v [LOCAL_PATH]:/var/jahia

jahia/jahia-ee:8.0.3.0

docker stop jahia8 && docker rm $_

docker run [docker options here] --name jahia8 -v [LOCAL_PATH]:/var/jahia

jahia/jahia-ee:8.1.0.0

https://academy.jahia.com/documentation/system-administrator/dev-ops/docker/migrations-with-docker-images

Docker
Compose

What is it ?

● Compose is a tool for defining and running multi-container Docker

applications.

● YAML file to configure your application’s services (ie containers)

● With a single command, you create and start all the services from

your configuration.

● Dependencies can be defined between services

docker-compose.yml
version: '3.6'
services:
 mariadb:
 image: library/mariadb:10-focal
 command: --max_allowed_packet=134217728 --transaction-isolation=READ-UNCOMMITTED --innodb-lock-wait-timeout=10
 networks:
 stack:
 environment:
 MYSQL_ROOT_PASSWORD: rootpassword
 …

 elasticsearch:
 image: docker.elastic.co/elasticsearch/elasticsearch:7.17.5
 networks:
 stack:
 environment:
 - cluster.name=jahia-es-cluster
 …
 ports:
 - 9200:9200

docker-compose.yml
 kibana:
 image: docker.elastic.co/kibana/kibana:7.17.5
 environment:
 - ELASTICSEARCH_URL=http://elasticsearch:9200
 …
 ports:
 - '8601:5601'
 networks:
 stack:
 depends_on:
 - elasticsearch

 jahia:
 image: jahia/jahia-ee-dev:8-SNAPSHOT
 depends_on:
 - mariadb
 ports:
 - 8080:8080
 - 443:8443
 networks:
 stack:
 environment:
 DBMS_TYPE: mariadb
 …
 OPERATING_MODE: development
 PROCESSING_SERVER: 'true'
 …
 JCUSTOMER_HOST: ${JCUSTOMER_HOST}
 JCUSTOMER_SECURE_PORT: ${JCUSTOMER_SECURE_PORT}

http://elasticsearch:9200

docker-compose.yml
 jcustomer:
 image: jahia/jcustomer-dev:2.1.0-SNAPSHOT
 networks:
 stack:
 environment:
 - UNOMI_ELASTICSEARCH_ADDRESSES=elasticsearch:9200
 …
 ports:
 - 9443:9443
 - 8181:8181
 - 8102:8102
 depends_on:
 - elasticsearch

networks:
 stack:
 driver: bridge

Jahia
Provisioning API

Overview

An API handling all the operation necessary for a Jahia node to reach a desired state
autonomously (no manual operations)

Allow Jahia to supports “infrastructure as code” principles, using YAML or JSON
provisioning files describing actions to be performed on a Jahia server

A provisioning scripts contains commands executed sequentially

Useful to put a new Docker image into a desired state, for example before launching
automated tests

Jahia Provisioning API

How to use it?

Create a provisioning file, for example:

● Install articles v3.0.0 and bookmarks 3.0.0

Provide it to your Jahia server with one of the following techniques:

● Using the REST API /modules/api/provisioning

● By placing it on the filesystem “/var/jahia/patches/provisioning/”

○ Can be done using volume bind, docker cp, …

● Using “EXECUTE_PROVISIONING_SCRIPT” environment variable

Jahia Provisioning API

- installOrUpgradeBundle:

 - "mvn:org.jahia.modules/article/3.0.0"

 - "mvn:org.jahia.modules/bookmarks/3.0.0"

 autoStart: true

Most common commands

● addMavenRepository
○ declares a maven repository

● include
○ executes another provisioning file

● installBundle
○ downloads and installs a module

● enable:
○ enables a module on a site

● editConfiguration
○ edit/create a configuration file

● import
○ imports a zip file previously exported

● executeScript
○ execute a script (groovy, GraphQL)

More on
https://academy.jahia.com/home/documentation/system-administrator/devops/provisioning/provisioning-commands.ht
ml

Jahia Provisioning API

https://academy.jahia.com/home/documentation/system-administrator/devops/provisioning/provisioning-commands.html
https://academy.jahia.com/home/documentation/system-administrator/devops/provisioning/provisioning-commands.html

Step by step provisioning
When using the API, Jahia provisioning can be broken down in multiple scripts

executed in a particular order.

This provides with fine-grain control over the server provisioning

For example:

● Install a set of commonly available modules
○ The script triggers the installation of “module A”

● Install a single module (“module B”) that was just compiled
○ The new module has a dependency on “module A”

● Perform a configuration on that new module
○ This operation requires the presence of both “module A” and “module B”

Breaking down the provisioning in multiple different scripts (or steps) is the only way to support

the scenario detailed above

Jahia Provisioning API

How do we use
it?

Overview

We extensively use Docker and Jahia provisioning API internally at Jahia

It is used:

● Manually
● By our CI environment
● By our preview environment

How do we use it?

Manually

Starting a particular Jahia version is as simple as:

● docker run -p 8080:8080 jahia/jahia-ee:VERSION

It is used across the company (QAs, Devs, Presales, …) to quickly spin-up a Jahia

instance

VERSION can be any version that is listed in the Docker Hub images or an alias such

as 8, 8.1 or “latest”

How do we use it?

Jahia CI environment

Our Continuous Integration environment relies on Docker and Jahia provisioning API

to test recent changes to our modules

In particular:

● When a PR is created (successful tests is required for merge)

● After a PR has been merged

● Nightly or Weekly test execution

You can see it in action for one of our modules (graphql-dxm-provider) here:

https://github.com/Jahia/graphql-core/tree/master/tests

How do we use it?

https://github.com/Jahia/graphql-core/tree/master/tests

CI environment: How ?
Our workflow:

● The CI platform triggers the creation of a runner

● A Docker image of the tests (Cypress or Selenium) is created

● A startup script is executed:
○ It uses docker-compose to start containers:

■ One or more Jahia and jCustomer containers

■ The test container that was just built

■ Any other containers needed for the tests

● Once containers are started, the test container:
○ Wait for Jahia to be available

○ Submit a provisioning script

○ (optionally) install a recently built module

○ Execute the tests

● The CI collects the results and provides a report

How do we use it?

https://github.com/Jahia/graphql-core/tree/master/tests

https://github.com/Jahia/graphql-core/tree/master/tests

Jahia preview environment

Once a day, a new environment is created from scratch, it automatically deploys the

latest development snapshot of Jahia and a large set modules

This allows our product managers to quickly access a “complete” environment

containing the latest changes

It is sometimes used jointly with our QA to easily demonstrate an issue

No data is persisted from day to day, the environment is always “fresh” (by design)

How do we use it?

Preview environment: How ?
Workflow:

● At the beginning of the day, CircleCI triggers creation of an environment via

Terraform:
○ One single EC2 Instance of size: t3a.xlarge

○ Terraform runs a startup script (bash) on this new EC2 instance

● The startup script:
○ Uses docker-compose to start the following containers: MariaDB, Elasticsearch

(single-node), Kibana, Jahia (snapshot), jCustomer (snapshot)

○ Waits for Jahia and jCustomer to be started

○ Send a provisioning script via the API

○ Execute a set of additional provisioning scripts (Groovy & GraphQL)

● At the end of the day, CircleCI triggers the destruction of the entire environment

via terraform

How do we use it?

Tips & Tricks

Wait for Jahia

Waiting for Jahia to start might be necessary to prevent the call to the provisioning
API from being made before the provisioning bundle has started

Tips & Tricks

https://github.com/Jahia/graphql-core/blob/master/tests/env.run.sh

START_TIME_JAHIA=$SECONDS

echo "$(date +'%d %B %Y - %k:%M') == Waiting for Jahia to startup - check URL ${JAHIA_URL}/cms/login"

while [["$(curl -s -o /dev/null -w ''%{http_code}'' ${JAHIA_URL}/cms/login)" != "200"]];

 do

 echo " == wait for 2 seconds for a response to: ${JAHIA_URL}/cms/login";

 sleep 2;

done

ELAPSED_TIME=$(($SECONDS - START_TIME_JAHIA))

echo "$(date +'%d %B %Y - %k:%M') == Jahia became alive in ${ELAPSED_TIME} seconds"

https://github.com/Jahia/graphql-core/blob/master/tests/env.run.sh

Submit a provisioning script

Using the REST API, you can submit a provisioning file directly

https://github.com/Jahia/graphql-core/blob/master/tests/env.run.sh

echo "$(date +'%d %B %Y - %k:%M') == Executing manifest: ${MANIFEST} =="

curl -u root:${SUPER_USER_PASSWORD} -X POST ${JAHIA_URL}/modules/api/provisioning --form

script="@./run-artifacts/${MANIFEST};type=text/yaml"

Tips & Tricks

https://github.com/Jahia/graphql-core/blob/master/tests/env.run.sh

Install modules

A module can also be sent via the API and installed directly using a specially crafted
POST request

You can also submit a set of modules

Pay attention to the order in which these modules are submitted, in particular if they are
interdependent.

https://github.com/Jahia/graphql-core/blob/master/tests/env.run.sh

 for file in $(ls -1 *-SNAPSHOT.jar | sort -n)

 do

 echo "$(date +'%d %B %Y - %k:%M') [MODULE_INSTALL] == Submitting module from: $file =="

 curl -u root:${SUPER_USER_PASSWORD} -X POST ${JAHIA_URL}/modules/api/provisioning --form

script='[{"installAndStartBundle":"'"$file"'", "forceUpdate":true}]' --form file=@$file

 echo

 echo "$(date +'%d %B %Y - %k:%M') [MODULE_INSTALL] == Module submitted =="

 done

Tips & Tricks

https://github.com/Jahia/graphql-core/blob/master/tests/env.run.sh

Install scripts

The same apply to scripts, which can be GraphQL or Groovy

cd ./scripts || exit 1

for file in $(ls -1 0* | sort -n)

do

 echo "$(date +'%d %B %Y - %k:%M') [SCRIPT] == Submitting script: $file =="

 curl -u root:${SUPER_USER_PASSWORD} -X POST ${JAHIA_URL}/modules/api/provisioning --form

script='[{"executeScript":"'"$file"'"}]' --form file=@$file

 echo "$(date +'%d %B %Y - %k:%M') [SCRIPT] == Script executed =="

done

Tips & Tricks

Demo

Learn more

Provisioning API tutorials

Step by step tutorial to progressively discover Docker and our Provisioning API

Keep Learning

https://github.com/Jahia/provisioning-tutorials

https://github.com/Jahia/provisioning-tutorials

Documentation

Dev-Ops section on the Academy

https://academy.jahia.com/documentation/system-administrator#dev-ops

Jahia Dockerfile and entrypoint script

https://github.com/Jahia/jahia/tree/master/docker/docker-jahia-core

An end-to-end CI setup (graphql-dxm-provider)

https://github.com/Jahia/graphql-core/tree/master/tests

Keep Learning

https://academy.jahia.com/documentation/system-administrator#dev-ops
https://github.com/Jahia/jahia/tree/master/docker/docker-jahia-core
https://github.com/Jahia/graphql-core/tree/master/tests

Q & A

Next
Webinar
January 24th,
2023

Deep Dive into
Jahia extensible UI

Jahia is looking for feedback

Jahia wants to make the developer easier and reduce the learning curve.

Any idea? Wants to give feedback on existing ideas?

shuber@jahia.com, rgauthier@jahia.com

mailto:shuber@jahia.com
mailto:rgauthier@jahia.com

Thank you!

